Development and Testing of Advanced S/U Methods for NCS Analyses

Dr. Christopher M. Perfetti

Dr. Bradley T. Rearden

Reactor and Nuclear Systems Division Oak Ridge National Laboratory

Introduction

 Sensitivity coefficients describe the change in a system response that occurs due to uncertainty or perturbations in system parameters.

$$S_{R,\Sigma_{x}} = \frac{\delta R/R}{\delta \Sigma_{x}/\Sigma_{x}}$$

• The SCALE code contains a suite of eigenvalue (k_{eff}) sensitivity and uncertainty analysis tools using the TSUNAMI code, which has proven indispensable for numerous application and design studies for nuclear criticality safety and reactor physics.

Introduction: Previous Work

- Recent NCSP-supported work has enabled the traditionally multigroup TSUNAMI-3D code to be extended to continuous-energy applications.
 - This work involved the development of the CLUTCH sensitivity method, a new and efficient approach for calculating eigenvalue sensitivity coefficients.

O-16 Capture Sensitivity 238-group VS Microgroup CLUTCH

MIX-COMP-THERM-004-001 FoM Comparison

Introduction

- This work has extended the Continuous-Energy (CE)
 TSUNAMI-3D eigenvalue sensitivity coefficient capabilities
 to enable a first-ever approach for calculating sensitivity
 coefficients for generalized neutronic responses in 3D, CE
 Monte Carlo simulations.
 - This was accomplished by combining the two approaches in CE TSUNAMI-3D for calculating eigenvalue sensitivity coefficients: the CLUTCH and Iterated Fission Probability (IFP) methods.
- This new generalized response sensitivity capability has been named the GEneralized Adjoint Responses in Monte Carlo (GEAR-MC) Method.

Generalized Perturbation Theory

 Generalized Perturbation Theory (GPT) estimates sensitivity coefficients for any system response that can be expressed as the ratio of reaction rates.

$$R = \frac{\langle \Sigma_1 \phi \rangle}{\langle \Sigma_2 \phi \rangle}$$

 Calculating generalized sensitivity coefficients requires solving an inhomogeneous, or generalized, adjoint equation:

$$L^{\dagger}\Gamma^{\dagger} = \lambda P^{\dagger}\Gamma^{\dagger} + S^{\dagger}$$

$$S^{\dagger} = \frac{1}{R} \frac{\partial R}{\partial \phi} = \frac{\Sigma_1}{\langle \Sigma_1 \phi \rangle} - \frac{\Sigma_2}{\langle \Sigma_2 \phi \rangle}$$

- Applications for GPT sensitivity/uncertainty analysis include:
 - Relative Powers
 - Isotope Conversion Ratios
 - Multigroup Cross Sections
 - Experimental Parameters

•	•		•		
NUMBER	EXPERIMENT	Type	Format	Value	Xsec Uncert
1	k_infinity	keff	Relative	1.1083E+0	4.98551E-1 % dk/k
2	fission_grp_1	gpt	Relative	1.9155E-3	6.91925E-1 % dR/R
3	fission_grp_2	gpt	Relative	2.7748E-2	3.23440E-1 % dR/R
4	absorpt_grp_1	gpt	Relative	7.1637E-3	8.36728E-1 % dR/R
5	absorpt_grp_2	gpt	Relative	5.3702E-2	2.38082E-1 % dR/R
6	cornerrod_fpf	gpt	Relative	1.1458E+0	1.67147E-1 % dR/R

OECD UAM GPT Benchmark Phase 1-2 Results & OAK R

Theory

- The generalized importance function for a response can be expressed as the sum of two terms: the intra-generation effect term and the intergenerational effect term.
 - The intra-generation effect describes how much importance a neutron generates after an event occurs.
 - The inter-generational effect describes the importance that is generated by the daughter fission neutrons of the original particle.

$$\Gamma^{\dagger}(\tau_{s}) = \frac{1}{Q_{s}} \langle \frac{1}{R} \frac{\partial R}{\partial \phi}(r) \phi(\tau_{s} \to r) \rangle + \frac{\lambda}{Q_{s}} \langle \Gamma^{\dagger}(r) P(r) \phi(\tau_{s} \to r) \rangle$$

- The CLUTCH sensitivity method is used to calculate the intrageneration term, and an Iterated Fission Probability-based approach calculates the inter-generational term.
- $\frac{1}{R} \frac{\partial R}{\partial \phi}(r)$ contains both positive and negative terms. Thus, events during a particle history can generate either positive or negative importance.

Inter-generational Importance

- The inter-generational term is calculated by tallying the intra-generational importance generated by neutrons in a fission chain as that importance approaches zero.
 - This term is tallied using the IFP method.

How does this approach differ from existing methods?

- Generalized Perturbation Theory Monte Carlo methods have been developed by Abdel-Khalik et al. for calculating generalized sensitivity coefficients in 3D, continuous-energy Monte Carlo applications, but these methods require performing multiple direct perturbation calculations and can require a large number of runs to calculate generalized sensitivity coefficients.
- This approach differs in that it:
 - Requires no perturbation calculations and no knowledge of nuclear covariance data.
 - Because our approach is not perturbation-based, we can easily calculate energy-dependent sensitivity coefficients for multiple responses to all input nuclear data parameters in one continuous-energy Monte Carlo transport calculation.
 - The deterministic, sensitivity-based TSUNAMI-1D and TSUNAMI-2D GPT methods require at least one transport calculation per generalized response.

TSUNAMI-1D/2D GPT Sequences

Resonance cross-section processing (repeated for all cells)

2D discrete ordinates

2D discrete ordinates adjoint calculation

S/U calculation for k_{eff}

2D discrete ordinates inhomogeneous adjoint calculation for each response S/U calculation for a user-defined response

CE TSUNAMI-3D GPT Sequence

3D Monte Carlo

$$L \phi = \lambda P \phi$$

$$L^{\dagger} \phi^{\dagger} = \lambda P^{\dagger} \phi^{\dagger}$$

$$L^{\dagger} \Gamma^{\dagger} = \lambda P^{\dagger} \Gamma^{\dagger} + S^{\dagger}$$

S/U calculation for k_{eff} and user-defined responses

GPT Flattop Foil Response Sensitivity Coefficients

F28/F25 Pu-239 **Sensitivity Coefficients**

F37/F25 U-238 **Sensitivity Coefficients**

National Laboratory

Flattop Total Nuclide Foil Response Sensitivities

Experiment	Response	Isotope	Direct Pert.	TSUNAMI-1D	GEAR-MC
Flattop	F28 / F25	U-238	0.8006 ± 0.0533	0.8024 (0.03 σ)	0.7954 ± 0.0018 (-0.10 σ)
		Pu-239	0.0528 ± 0.0043	0.0657 (2.99 σ)	0.0561 ± 0.0012 (0.73 σ)
	F37 / F25	U-238	-0.1540 ± 0.0102	-0.1551 (-0.11 σ)	-0.1608 ± 0.0016 (-0.66 σ)
		Pu-239	0.0543 ± 0.0048	0.0736 (3.99 σ)	0.0489 ± 0.0010 (-1.10 σ)

Part Two: GEAR-MC Efficiency Improvements

The IFP Method

- Originally a modified version of the Iterated Fission Probability (IFP) Method was used to tally the intergenerational term.
- The IFP Method can produce large memory footprints for systems with a large number of materials, isotopes, etc.

Illustration of the IFP Process. Image courtesy of Brian Kiedrowski.

Sensitivity Method Memory Usage					
Model	CLUTCH	IFP			
Fuel Pin	1.06 MB	2,113 MB			
Godiva	0.12 MB	26 MB			
HMF-025-005	0.16 MB	1,675 MB			
LCT-010-014	25 MB	19,509 MB			
NAC-UMS	3,416 MB	21,201 MB			

The F*(r) Function

- The CLUTCH Method uses an importance weighting function, F*(r), to compute multigenerational sensitivity effects.
- The F*(r) function describes the average response importance generated by fission neutrons born at location r.

- The F*(r) function can be calculated using the IFP method during inactive generations with NO loss of accuracy and with significant memory savings.
- This work also sought to extend the concept of F*(r) to compute the inter-generational effect term in GEAR-MC GPT sensitivity calculations.

Evaluation of Accuracy: GPT Flattop Foil Response Sensitivity Coefficients

Generalized sensitivity coefficients were calculated for models of several criticality safety systems to:

- Evaluate the accuracy of the F*(r) approach.
- Explore the potential improvements in computational efficiency.

Evaluation of Accuracy: GPT Flattop Foil Response Sensitivity Coefficients

 The CLUTCH-only GEAR-MC calculations showed good agreement with both the conventional GEAR-MC and the reference Direct Perturbation sensitivity coefficients.

Experiment	Response	Isotope	Direct Pert.	TSU-1D	GEAR-MC with IFP	GEAR-MC CLUTCH only
Flattop	F28 / F25	U-238	0.8006 ± 0.0533	0.8024 (0.03 σ)	0.7954 ± 0.0018 (-0.10 σ)	0.7870 ± 0.0040 (-0.26 σ)
		Pu-239	0.0528 ± 0.0043	0.0657 (2.99 σ)	0.0561 ± 0.0012 (0.73 σ)	0.0561 ± 0.0016 (0.71 σ)
	F37 / F25	U-238	-0.1540 ± 0.0102	-0.1551 (-0.11 σ)	-0.1608 ± 0.0016 (-0.66 σ)	-0.1634 ± 0.0040 (-0.86 σ)
		Pu-239	0.0543 ± 0.0048	0.0736 (3.99 σ)	0.0489 ± 0.0010 (-1.10 σ)	0.0557 ± 0.0015 (0.27 σ)

Memory Usage

 Moving away from an IFP-based approach resulted in significant reductions in the computational memory footprint of simulations.

GEAR-MC Memory Usage

Model	GEAR-MC with IFP	GEAR-MC CLUTCH only	Memory Reduction
Godiva	581 MB	2.8 MB	99.52%
Flattop	1,082 MB	5.2 MB	99.52%
Fuel Pin	6,358 MB	3.2 MB	99.95%

Computational Efficiency

 Moving to a CLUTCH-only approach resulting in significantly improved computational efficiency for several cases.

The Flattop calculations experienced an unexpected drop in

efficiency when using an F*(r) mesh.

GEAR-MC Performance Metrics

Model	Average Run	Average	
	IFP	CLUTCH	Speedup
Godiva	328.2	165.3	26.0
Flattop	261.1	197.1	0.52
Fuel Pin	191.4	44.1	10.25

Fuel Pin Thermal Fission Cross-Section Sensitivity to H-1

Scaling and Memory Usage

CLUTCH

One F*(r) Mesh per Response

IFP

Large Initial Overhead, Low Additional Memory per Response

Conclusions and Future Work

- The recently developed GEAR-MC method presents a first-of-its-kind approach for calculating sensitivity coefficients for generalized neutronic responses using continuous-energy, 3D Monte Carlo methods.
- The F*(r) mesh approach, which was originally developed for CLUTCH eigenvalue sensitivity calculations, was successfully extended to GEAR-MC GPT calculations.
- Removing the need to perform IFP calculations significantly reduced the memory footprint and, in some instances, improved the efficiency of the sensitivity calculations.
- The best approach for GEAR-MC calculations is likely problemdependent, and F*(r) meshes in systems that are physically large, require a finely-resolved mesh, or contain a large number of responses may create significant memory footprints.

Questions???

Please contact:

Chris Perfetti perfetticm@ornl.gov

